Some Comparisons

Based on worked Bayesian examples with raw data. Classical analysis compared to Bayesian results.

Surgical Deaths (baby heart surgeries)

- 12 hospitals, record the number of deaths and the total number of surgeries.

1	A	B	C
2	1	0	Deaths

Approach 1 - Random sample of 12 hospitals

- One approach is to calculate the mortality rate at each hospital and use standard parametric statistics to describe the mean and SD.

			A
	Hospital	Deaths	Surgery
2	1	0	47
3	2	18	148
4	3	8	119
5	4	46	810
6	5	8	211
7	6	13	196
8	7	9	148
9	8	31	215
10	9	14	207
11	10	8	97
12	11	29	256
13	12	24	360

Approach 1 - Random sample of 12 hospitals

- One approach is to calculate the mortality rate at each hospital and use standard parametric statistics to describe the mean and SD.

Arithmetic Mean	7.374
95.08 LCL of Ar:	4.932
95.08 UCL of Ar:	9.817

Approach 1 - Random sample of 12 hospitals

- Problem: It treats all hospitals equally, even though we have 810 surgeries at one hospital and 47 at another.

Approach 2 - Sum of all data

- If we sum the mortality from all hospitals and divide by the total surgeries, we get an estimate of the mortality rate (this is the MLE).

Hospital	Deaths	Surgery	
1	0	47	
2	18	148	
3	8	119	
4	46	810	
5	8	211	
6	13	196	
7	9	148	
8	31	215	
9	14	207	
10	8	97	
11	29	256	
12	24	360	
	208	2814	
		7.39%	

How do we calculate a STD and Cl for this single number??

If we assume that mortality rate is constant across hospitals (and thus all 2814 surgeries are independent and identical), we can use the Binomial Distribution!

Approach 2 - Sum of all data

Hospital	Deaths	Surgery	
1	0	47	
2	18	148	
3	8	119	
4	46	810	
5	8	211	
6	13	196	
7	9	148	
8	31	215	
9	14	207	
10	8	97	
11	29	256	
12	24	360	
	208	2814	7.39%

Binomial Distribution

$$
\begin{aligned}
& \text { SE }=\operatorname{SQRT}\left\{\left(\left(p^{*}(1-p)\right) / n\right)\right\} \\
& S E=0.49 \%
\end{aligned}
$$

Estimate = 7.39\%
L95 = 6.42\%

$$
S E=\sqrt{\frac{p(1-p)}{n}}
$$

U95 = 8.36\%

Comparison:

Arithmetic Mean	7.374
95.08 LCL of Ar:	4.932
95.08 UCL of Ar:	9.817

$$
\begin{gathered}
\text { Estimate }=7.39 \% \\
\text { L95 }=6.42 \% \\
\text { U95 }=8.36 \%
\end{gathered}
$$

Comparison:

Arithmetic Mean	7.374
95.08 LCL of Ar:	4.932
95.08 UCL of Ar:	9.817

Estimate $=7.39 \%$

$\left.\begin{array}{|ccccccc|c|}\hline \text { Hospital } & \text { Deaths } & \text { Surgery } & \text { Rate } & \text { SE } & \text { L95 } & \text { U95 } & \text { OUTSIDE }\end{array}\right]$| Z |
| :---: |
| 1 |

L95 = 6.42\%
U95 = 8.36\%

kindle

Solution

We can relate the logit of the expected mortality rate pbar with the mean of the random effect mu via a logical expression.

The model then becomes:	\# Derived
	```model <- function() { # Priors```
Surgical Deaths (baby heart surgeries)	$\begin{aligned} & \text { mu } \sim \operatorname{dnorm}(0,0.001) \\ & \text { tau } \sim \operatorname{dgamma}(0.001,0.001) \end{aligned}$
- 12 hospitals, record the number of deaths and the total number of surgeries.   Estimate the mortality rate for baby heart surgery.	```# Likelihood for (i in 1:k) { y[i] ~ dbin(prob[i], n[i]) logit(prob[i]) <- x[i] x[i] ~ dnorm(mu, tau)```
	\}
	$\begin{aligned} & \text { \# Derived } \\ & \text { logit(pbar) <- mu } \end{aligned}$
	\}

Surgical Deaths (baby heart surgeries)

- 12 hospitals, record the number of deaths and the total number of surgeries.


Denote the number of surgical deaths by $y$, and the number of operations by n. From the data in the Surgical example of OpenBUGS, we have

```
y <- c(0, 18, 8, 46, 8, 13,
 9, 31, 14, 8, 29, 24)
n <- c(47, 148, 119, 810, 211, 196,
 148, 215, 207, 97, 256, 360)
```

Then we define the data and initialization parameters.

```
k <- 12
data <- list("y", "n", "k")
params <- c("mu", "pbar")
inits <- function() {
 list(mu=0, tau=1, x=numeric(k))
}
```

After the simulation, the xyplot shows no obvious upward or downward trends in the trace plot.

## General MCMC Diagnostics




```
params <- c("mu", "pbar")
inits <- function() {
 list(mu=0, tau=1, x=numeric(k))
}
```

After the simulation, the xyplot shows no obvious upward or downward trends in the trace plot.


These are traces of the MCMC values. Typically the initial 1000 or 2000 are thrown away as a burn in period.
(We might talk about MCMC and the Metropolis Hastings a bit)


In addition, the acfplot
shows that the auto-correlation converges to zero.



Surgical Deaths (baby heart surgeries)

- 12 hospitals, record the number of deaths and the total number of surgeries.

Estimate the mortality rate for baby heart surgery.
$+\quad q=c(0.025,0.975))$
> out.summary\$stat["pbar",

+ "Mean", drop=FALSE]
Mean
pbar 0.07292
> out.summary\$q["pbar", ]

2. 5\% 97.5\%
$0.05332 \quad 0.09401$

## Final Comparisons:

	Estimate	L95	U95
12 rates	7.37	4.93	9.82
Pooled Binomial	7.39	6.42	8.36
Bayesian Hierarchical	7.29	5.33	9.40

## 1-way ANOVA

	A	B	C	D
1	Item	Sales	TM2	TM3
2	1	22	1	0
3	1	42	1	0
4	1	44	1	0
5	1	52	1	0
6	1	45	1	0
7	1	37	1	0
8	2	52	0	1
9	2	33	0	1
10	2	8	0	1
11	2	47	0	1
12	2	43	0	1
13	2	32	0	1
14	3	16	0	0
15	3	24	0	0
16	3	19	0	0
17	3	18	0	0
18	3	34	0	0
19	3	39	0	0



## 1-Way ANOVA

## Effects Coding

Estimates of Effects B $=\left(X^{\prime}\right)^{-1} X^{-1} Y$

Factor	Level	SALES
CONSTANT		33.722
GROUP	1	6.611
GROUP	2	2.111

Analysis of Variance

Source	Type III SS	df	Mean Squares	F-Ratio	p-Value
GROUP	745.444	2	372.722	2.541	0.112
Error	$2,200.167$	15	146.678		

Least Squares Means

Factor	Level	LS Mean	Standard Error	$\mathbf{N}$
GROUP	1	40.333	4.944	6.000
GROUP	2	35.833	4.944	6.000
GROUP	3	25.000	4.944	6.000

## Dummy Coding

Dependent Variable	SALES
N	18
Multiple R	0.503
Squared Multiple R	0.253

Estimates of Effects $B=\left(X^{\prime} X\right)^{-1} X^{\prime} Y$

Factor	Level	SALES
CONSTANT		25.000
GROUP	1	15.333
GROUP	2	10.833

Analysis of Variance

Source	Type III SS	df	Mean Squares	F-Ratio	p-Value
Regression	745.444	2	372.722	2.541	0.112
Residual	$2,200.167$	15	146.678		

## Dummy Variable Regression

Regression Coefficients $\mathrm{B}=\left(\mathrm{X}^{\prime} \mathrm{X}\right)^{-1} \mathrm{X}^{\prime} \mathbf{Y}$

Effect	Coefficient	Standard Error	Std.   Coefficient	Tolerance	t	p-Value
CONSTANT	25.000	4.944	0.000		5.056	0.000
TM1	15.333	6.992	0.565	0.750	2.193	0.044
TM2	10.833	6.992	0.399	0.750	1.549	0.142

Confidence Interval for Regression Coefficients

Effect	Coefficient	$\mathbf{9 5 . 0 \%}$ Confidence Interval	VIF	
		Lower	Upper	
CONSTANT	25.000	14.461	35.539	
TM1	15.333	0.430	30.237	1.333
TM2	10.833	-4.070	25.737	1.333

Analysis of Variance

Source	SS	df	Mean Squares	F-Ratio	p-Value
Regression	745.444	2	372.722	2.541	0.112
Residual	$2,200.167$	15	146.678		

## Bayesian

```
model <- function() {
```

    \# Priors
    alpha \(\sim\) dunif ( \(-1 e 10,1 \mathrm{e} 10\) )
    beta[1] <- 0
    for ( \(k\) in 2:ngroup) \{
        beta[k] ~ dunif(-1e10, 1e10)
    \}
    tau ~ dgamma(0.001, 0.001 )
    \# Likelihood
    for (i in \(1: N\) ) \{
    ```
 y[i] ~ dnorm(mu[i], tau)
 mu[i] <- alpha + beta[tm[i]]
 }
 # Derived
 eff <- beta[2] - beta[3]
}
While we define beta [1] to be zero in the BUGS model, we
set it as NA during the initialization.
inits <- function() {
 beta <- numeric(ngroup)
 beta[1] <- NA
 list(alpha=0, beta=beta, tau=1)
}
```


## Bayesian

After the simulation, we can retrieve the $95 \%$ credible intervals of the contrast parameters beta [2], beta [3], and eff. Only beta [3] manages to exclude the zero value.

```
> out$summary[, c("2.5%", "97.5%")]
2.5% 97.5%
alpha 30.160 51.0302
beta[2] -19.760 9.5546
beta[3] -30.550 -0.7822
eff -4.064 25.5602
deviance 138.100 150.6000
```


## Linear Model in $R$

```
> fastfood.lm <- lm(y ~ tm)
> anova(fastfood.lm)
Analysis of Variance Table
Response: y
 Df Sum Sq Mean Sq F value Pr (>F)
tm }\begin{array}{llllll}{2}&{745}&{373}&{2.54}&{0.11}
Residuals 15 2200 147
```

However, the following shows almost identical parameter estimates with the classical linear model. As added bonus, we managed to estimate the contrast between the second and third treatment levels without extra effort using OpenBUGS.

```
> cbind(unlist(out$mean[params]))
 [,1]
alpha 40.353
beta1 -4.475
beta2 -15.369
eff 10.895
> cbind(coefficients(fastfood.lm))
 [,1]
(Intercept) 40.33
tm2 -4.50
tm3 -15.33
```


## Final Comparison:

## Systat Linear Model

|  | Estimate | L95 | U95 |
| :--- | :---: | :---: | :---: |
| Alpha | 40.33 | 27.62 | 53.04 |
| Beta2 | -15.33 | -30.24 | -0.43 |
| Beta3 | -10.83 | -4.07 | 25.74 |

## Bayesian in $\mathbf{R}$

|  | Estimate | L95 | U95 |
| :--- | :---: | :---: | :---: |
| Alpha | 40.35 | 30.16 | 51.03 |
| Beta2 | -15.37 | -30.55 | -0.78 |
| Beta3 | -10.90 | -4.06 | 25.56 |

## Linear Regression

|  |  | A | B |
| :---: | :---: | :---: | :---: |
|  | C |  |  |
| 1 | Eruption $(y)$ | Wait $(x)$ | Centered Wait |
| 2 | 3.6 | 79 | 8.10 |
| 3 | 1.8 | 54 | -16.90 |
| 4 | 3.3 | 74 | 3.10 |
| 5 | 2.3 | 62 | -8.90 |
| 6 | 4.5 | 85 | 14.10 |
| 7 | 2.9 | 55 | -15.90 |
| 8 | 4.7 | 88 | 17.10 |
| 9 | 3.6 | 85 | 14.10 |
| 10 | 2 | 51 | -19.90 |
| 269 | 4.1 | 81 | 10.10 |
| 270 | 2.1 | 46 | -24.90 |
| 271 | 4.4 | 90 | 19.10 |
| 272 | 1.8 | 46 | -24.90 |
| 273 | 4.5 | 74 | 3.10 |



## Linear Regression

| Dependent Variable | ERUPTIONS |
| :--- | :--- |
| $\mathbf{N}$ | 272 |
| Multiple R | 0.901 |
| Squared Multiple R | 0.812 |
| Adjusted Squared Multiple R | 0.811 |
| Standard Error of Estimate | 0.495 |

Regression Coefficients $B=\left(X^{\prime} X\right)^{-1} X^{\prime} Y$

| Effect | Coefficient | Standard Error | Std. <br> Coefficient | Toleri |
| :--- | ---: | ---: | ---: | ---: |
| CONSTANT | 3.491 | 0.030 | 0.000 |  |
| CENTERED_WAITING | 0.075 | 0.002 | 0.901 | 1 |

Confidence Interval for Regression Coefficients

| Effect | Coefficient | $\mathbf{9 5 . 0 \%}$ Confidence Interval | VIF |  |
| :--- | ---: | ---: | ---: | ---: |
|  |  | Lower | Upper |  |
| CONSTANT | 3.491 | 3.432 | 3.550 |  |
| CENTERED_WAITING | 0.075 | 0.071 | 0.080 | 1.000 |

## Linear Regression

Plot of R esiduals vs. Predicted Values


Analysis of Variance

| Source | SS | df | Mean Squares | F-Ratio | p-Value |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Regression | 285.128 | 1 | 285.128 | $1,162.719$ | 0.000 |
| Residual | 66.211 | 270 | 0.245 |  |  |


| Durbin-Watson D-Statistic | 2.548 |
| :--- | ---: |
| First Order Autocorrelation | -0.281 |

## Bayesian Linear Regression

In a simple linear regression model, for a given value of $x$, the response data $y$ is a random variable with expected value $E(y)$. We can break up the model into two parts. The first equation below denotes a stochastic component that expresses $y$ as a normally distributed random variable, and the second equation denotes a deterministic component that expresses the expected value $E(y)$ linearly in terms of $x$.

$$
\begin{aligned}
y & =E(y)+\epsilon \\
E(y) & =\alpha+\beta x
\end{aligned}
$$

Hence, for a sequence of observations, we can write the following.

```
for (i in 1:n) {
 y[i] ~ dnorm(mu[i], tau)
 mu[i] <- alpha + beta*x[i]
}
```


## Bayesian Linear Regression

We define the BUGS model as follows. Here, we use the vague prior dnorm (0, 0.001) for alpha and beta.

```
model <- function() {
 # Priors
 alpha ~ dnorm(0, 0.001)
 beta ~ dnorm(0, 0.001)
 tau ~ dgamma(0.001, 0.001)
 # Likelihood
 for (i in 1:n) {
 y[i] ~ dnorm(mu[i], tau)
 mu[i] <- alpha + beta*x[i]
 }
}
```


## Bayesian Linear Regression

Source Listing<br>waiting <- faithful\$waiting<br>x.m <- mean (waiting)<br>$\mathrm{x}<-$ waiting - x.m<br>y <- faithful\$eruptions<br>n <- length (waiting)<br>data <- list("x", "y", "n")

```
params <- c("alpha", "beta", "mu")
inits <- function() {
 list(alpha=0, beta=0, tau=1)
}
library(R2OpenBUGS)
model.file <- file.path(tempdir(),
 "model.txt")
write.model(model, model.file)
out <- bugs(data, inits, params,
 model.file, n.iter=5000)
all(out$summary[,"Rhat"] < 1.1)
fitting the model
cbind(unlist(out$mean [
 c("alpha", "beta")]))
credible intervals
out$summary[c("alpha", "beta"),
 c("2.5%", "97.5%")]
```


## Bayesian Linear Regression

+ c("alpha", "beta")]))
[,1]
alpha 3.48693
beta 0.07565
The $95 \%$ credible intervals of the model coefficients are
> out\$summary[c("alpha", "beta"),
$+\quad c(" 2.5 \%$ ", "97.5\%")]
$2.5 \% \quad 97.5 \%$
alpha 3.427003 .54600
beta 0.071180 .08007


## Bayesian Linear Regression

+ c("alpha", "beta")]))
[,1]
alpha 3.48693
beta 0.07565
The $95 \%$ credible intervals of the model coefficients are
> out\$summary[c("alpha", "beta"),
+ c("2.5\%", "97.5\%")]
2.5\% 97.5\%
alpha 3.427003 .54600
beta 0.071180 .08007


## Final Comparison:

## Systat Linear Model

|  | Estimate | L95 | U95 |  | Estimate | L95 | U95 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Alpha | 3.491 | 3.432 | 3.550 | Alpha | 3.487 | 3.427 | 3.546 |
| Beta | . 0754 | . 0711 | . 0798 | Beta | . 0757 | . 0712 | . 0801 |

Bayesian in R

Note 1
The point estimates of the coefficients are almost identical to the classical linear parameters.

## Sarah's PhD research

The parameter estimates for nest success, juvenile mortality, and adult mortality were estimated with a beta-binomial mixture model, with one sample per study. The beta distribution constrained the estimates between 0 and 1 , which was an important component of the realism of these estimates.
(Eq 2)

$$
\begin{aligned}
& \mathrm{X}_{\mathrm{ij}} \sim \operatorname{Binomial}\left(\mathrm{n}_{\mathrm{i},} \mathrm{p}_{\mathrm{i}}\right) \\
& \mathrm{p}_{\mathrm{i}} \sim \operatorname{Beta}(\alpha, \beta)
\end{aligned}
$$

Parameter estimates were computed using the Metropolis Hastings algorithm for Markov Chain Monte
 Carlo (MCMC) estimation. The Metropolis Hastings algorithm enables nonsymmetric proposals for each parameter, which is needed when estimating non-Gaussian distributions. Gibbs sampling was utilized to increase sampling efficiency. For the poisson gamma model, MCMC estimated the $\alpha$ and $\beta$ parameters of the gamma distribution. For the beta-binomial models, MCMC estimated the $\alpha$ and $\beta$ parameters of the beta distribution. The conjugate prior utilized for all models was a weak gamma prior $(0.001,0.001)$.

The starting point for the beta-binomial chain was $\alpha=18$ and $\beta=7$. The chain ran 5000 iterations, of which the first 1000 iterations were discarded as the burn-in period. The remaining 4000 iterations comprised the posterior distribution and were used to create $95 \%$ credible intervals that represent $95 \%$ of the probability distribution. Histograms representing 1000 random samples from each beta and gamma model fit were created using the rgamma function based on mean estimate values for alpha and beta.

| $\begin{aligned} & \text { Study } \\ & \text { ID } \end{aligned}$ | Study | Site | Habitat | Fossorial Mammal | $\begin{aligned} & \text { Burrow } \\ & \text { type } \end{aligned}$ | Method | Year | Juvenile Mortality | ${ }^{n}$ juv. | Adult mortality | n adult | $\begin{aligned} & \hline \text { Nest } \\ & \text { Success } \end{aligned}$ | $\mathrm{n}$ nest | Productivity | SE | n |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | $\begin{aligned} & \text { Barclay et al } \\ & 2011 \end{aligned}$ | Califormia | Airport | CA ground squirrels | Both | observations | $\begin{aligned} & 1990- \\ & 2007 \end{aligned}$ | 0.74 | 656 | 0.46 | 23 | 0.79 | 342 |  |  |  |
| B | $\begin{aligned} & \text { Beragdelli et } \\ & \text { al } 2010 \end{aligned}$ | New Mexico | urban <br> grassland | Rock squirrel | both | observations | 2000-01 |  |  |  |  | 0.74 | 144 | 3.47 | 0.21 | 106 |
| C | Clayton and <br> Schmutz <br> 1999 | Alberta <br> Saskatchewan | pasture | NA | NA | Radiotelematrx | $\begin{aligned} & 1995- \\ & 1996 \end{aligned}$ | 0.53 | 46 | 0.43 | 30 |  |  |  |  |  |
| D | $\begin{aligned} & \text { 1999 } \\ & \text { Conway et al } \\ & 2006 \end{aligned}$ | Washington | Urban/ agriculture | badger, marmot, ground squirrel | natural | observations | $\begin{aligned} & 2000- \\ & 2004 \end{aligned}$ |  |  |  |  | 0.46 | 1088 | 3.15 | 0.13 | 500 |
| E | $\begin{aligned} & \text { Davies and } \\ & \text { Restani, } 2006 \end{aligned}$ | North Dakota | grassland | Prainie dogs | Natural | Radistelematrx | 2003-4 | 0.45 | 40 |  |  |  |  |  |  |  |
| F | $\begin{aligned} & \text { Green \& } \\ & \text { Anthony } \\ & 1989 \end{aligned}$ | Oregon | Grassland shrubland | badger | natural | observations | 1980-1 |  |  |  |  | 0.53 | 139 |  |  |  |
| G | $\begin{aligned} & \text { Griebel and } \\ & \text { Saxidge } 2007 \end{aligned}$ | South Dakota | Grassland | Prairie dogs | natural | observations | $\begin{aligned} & 1999- \\ & 2000 \end{aligned}$ |  |  |  |  | 0.76 | 274 | 3.5 |  | 207 |
| H | $\begin{aligned} & \text { Holmes et al } \\ & 2003 \end{aligned}$ | Oregon | Grassland | Badger | natural | observations | $\begin{aligned} & 1995- \\ & 1997 \end{aligned}$ |  |  |  |  | 0.57 | 99 |  |  |  |
| I |  <br> Conway <br> 2009 | Wyoming | grassland | Prairie dogs | natural | observations | 2003-4 |  |  |  |  | 0.71 | 77 |  |  |  |
| J | $\begin{aligned} & \text { Lehman et al } \\ & 1998 \end{aligned}$ | Idaho | Shrub steppe |  |  | observations | $\begin{aligned} & 1992- \\ & 1994 \end{aligned}$ |  |  |  |  | 0.64 | 108 |  |  |  |
| K | Lutz and Plumpton 1999 | Colorado | Grassland | Prairie dogs | natural | Banding, observations | $\begin{aligned} & 1999 \\ & 1990- \\ & 1994 \end{aligned}$ |  |  |  |  | 0.82 | 167 |  |  |  |
| L |  <br> Bear 2000 | Florida | suburban | Owls | natural | observations | 1987-90 |  |  |  |  | 0.7 | 736 | 2.9 | 0.1 | 512 |
| M | Millsap 2002 | Florida | suburban | Owls | natural | Banding, observations | $\begin{aligned} & 1987- \\ & 1991 \end{aligned}$ | 0.7 | 310 | 0.33 | 271 |  |  |  |  |  |
| N | $\begin{aligned} & \text { Restani et al. } \\ & 2001 \end{aligned}$ | Montana | Grassland | Prairie dogs | Natural | observations | 1998 |  |  |  |  | 0.92 | 13 |  |  |  |
| 0 | Rosenberg \& Haley 2004 | Imperial <br> County, CA | agricultural | CA Ground Squirrel | Natural artificial | Banding, observations | $\begin{aligned} & 1997- \\ & 2000 \end{aligned}$ |  |  | 0.36 | 295 | 0.79 | 78 | 3.09 |  | 62 |
| P | $\begin{aligned} & \text { Rosenberg et } \\ & \text { al } 2007 \end{aligned}$ | California | several | CA ground squirrel | natural | observations | $\begin{aligned} & 1997- \\ & 2003 \end{aligned}$ |  |  |  |  | 0.62 | 419 | 3.38 | 0.43 | 297 |
| Q | $\begin{aligned} & \text { Thomsen } \\ & 1971 \end{aligned}$ | California | Airport | Ca ground squirrels | Natural | Banding, observations | 1965-6 | 0.27 | 71 | 0.19 | 21 | 0.54 | 24 | 4.4 |  | 13 |
| R | Todd 2001 | Saskatchewan | Pasture | NA | Artificial | Radiotelematrx | 1997 | 0 | 12 |  |  |  |  |  |  |  |
| S | $\begin{aligned} & \text { Todd et al. } \\ & 2003 \end{aligned}$ | Saskatchewan | Pasture | Richardoon's ground squirrels | Mostly artificial | Radistelematro, <br> banding | $\begin{aligned} & 1998-1 \\ & 2000 \end{aligned}$ | 0.55 | 64 |  |  |  |  |  |  |  |



| Parameter | Mean $\pm \mathrm{SD}$ | CV | 95\% credible interval |
| :--- | :---: | :---: | :---: |
| Juvenile mortality | $0.45 \pm 0.21$ | 0.47 | $0.257-0.637$ |
| Adult mortality | $0.35 \pm 0.03$ | 0.09 | $0.295-0.401$ |
| Nest success | $0.67 \pm 0.02$ | 0.03 | $0.609-0.733$ |
| Productivity | $3.3 \pm 0.32$ | 0.10 | $3.0-3.6$ |





24.1 Inference for Two Matched Samples

When we have two matched samples from repeated measurements in the same experiment, say y 1 and y 2 , we can pair up the data and calculate their difference.
$\mathrm{y}<-\mathrm{y} 1-\mathrm{y} 2$
Therefore, comparing the population means of two matched samples is the same as finding the population mean of their difference, and we can apply one of our previous models for this purpose.

## Problem

The data set immer contains the yield data of six barley fields in years 1931 and 1932. The 1931 yield is in Y1, and the 1932 yield is in Y2. Assuming the data to be normally distributed, find a $95 \%$ credible interval of the difference in population means between $\Upsilon 1$ and Y 2 .

## Solution

We denote the two barley yield data as y 1 and y 2 . With matched samples, we can denote their difference as $y$.
> library (MASS)

$$
>\mathrm{n}<- \text { length }(\mathrm{y})
$$

We then investigate the expected value of y using our previous model
for the mean of a normal distribution.
model <- function() \{
$\ddagger$ Priors
mu ~ dunif ( $-1 \mathrm{e} 10,1 \mathrm{e} 10$ )
tau $\sim$ dgarma ( $0.001,0.001$ )
4 Likelihood
for (i in $1: n$ )
$y[i] \sim \operatorname{dnorm}(m u$, tau $)$
)

Then we define similar data and initial parameters.
$>$ data <- 1ist ("y", "n")
> params <-c("mu")
> inits <- function() |

```
> unlist(out$mean[params])
 mu
 15.88
> out\$summary[params,
+ c("2.5%", "97.5%")]
 2.5% 97.5%
 6.076 25.550
```

| Variable | Mean Difference | $95.00 \%$ Confidence Interval |  |
| :--- | ---: | ---: | ---: |
|  |  | Lower Limit | Upper Limit |
| VAR(1) | 15.9133 | 6.1220 | 25.7047 |
| VAR(2) |  |  |  |


| $\mathbf{t}$ | $\mathbf{d f}$ | $\mathbf{p}$-Value |
| ---: | ---: | ---: |
| 3.3240 | 29.0000 | 0.0024 |

